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The steady flow of an ideal gas with finite conductivity past a thin wedge section 
in an aligned magnetic field is considered within the linearized theory. The wedge 
is assumed to be an insulator or a perfect conductor. The flow field around the 
obstacle is found by numerical integration of the Fourier transform for various 
values of the Mach number, the Alfven Mach number and the magnetic Reynolds 
number in the main stream. The outer flow is estimated by the method of 
asymptotic expansions. These results disclose how the inner flow including gas- 
dynamic features changes to the magnetohydrodynamic outer flow. 

1. Introduction 
This paper is concerned with the linearized theory of steady flow of a com- 

pressible fluid with finite conductivity past a thin cylindrical obstacle in the 
presence of an aligned magnetic field. The similar problems for an incompressible 
fluid have been investigated extensively (e.g. Sears & Resler 1959), while those 
for a compressible fluid are restricted to the cases of extremely high or low 
magnetic Reynolds number (McCune & Resler 1960; Imai 1960; Sakurai 1960; 
Tamada 1962) or a special configuration such as the flow past a sinusoidal wall 
(Resler & McCune 1960). 

The flow field of a compressible fluid with finite conductivity can be charac- 
terized by the Mach number M ,  the Alfvbn Mach number A and the magnetic 
Reynolds number R, in the main stream. Then, in the limit of ordinary gas- 
dynamics R, + 0, the flow is of the hyperbolic type only for M > 1 and has 
a shock wave. But, in the opposite limit R, + 00, the flow becomes elliptic in 
type for A < 1 even if M > 1, and a weak shock is impossible, while it becomes 
hyperbolic in type for A < 1 and M 2 + A 2  > 1 even if ill < 1, and an upstream 
shock is possible. For M > 1 and A > 1, the flow field is of the hyperbolic type 
in both limits, but their characteristic curves have different directions. Thus i t  
is very interesting to see how different types of flow are connected for different 
limiting values of R,. 

For this purpose, we consider a steady two-dimensional flow of an ideal gas 
with finite conductivity past a simple wedge with a small angle and a finite length 
followed by a straight section. The magnetic field is assumed to be aligned. Such 
a special type of obstacle is chosen because it gives the simplest physically 
meaningful flow and does not cause a restriction on the analysis. 
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Such a magnetohydrodynamic problem can be dealt with conveniently by the 
Fourier transform technique, and the solutions can be obtained in Fourier 
integral form in general. It is difficult, however, to deduce the flow properties 
from them directly, because of the complicated integrand including the roots of 
a characteristic equation with complex coefficients. At the present time, how- 
ever, it is comparatively easy to evaluate such an integral by making use of 
a computer. These numerical results, as well as the knowledge of the outer flow 
estimated by the method of asymptotic expansions, serve to find the effects of 
finite conductivity on the compressible flow mentioned above. 

2. Basic equations 
The basic equations describing a linearized two-dimensional compressible flow 

with an aligned magnetic field have been provided by many authors (e.g. McCune 
& Resler 1960). We choose the origin of the co-ordinate system at the nose and the 
z axis along the main stream and hence the centre-line of the wedge section, and 
the y axis perpendicular to it. The distance between the nose and the shoulder is 
taken as the scale length. The z and y components of the perturbation velocity 
and magnetic field are denoted by u, v,  B, and B,, respectively. They are 
normalized by their values in the main stream. Then, these quantities are 
related by the following equations: 

where N = Rm/A2 denotes the interaction parameter. The dimensionless per- 
turbation pressure and density then can be expressed in terms of u: 

p = - yM2u, p = - MZU, (5) 
where y is the ratio of the specific heats. 

Since the flow is symmetric about the x axis, only the flow in the upper half- 
plane will be considered in the following description. A part of the boundary 
conditions is given by the requirement that all the perturbation quantities vanish 
at  infinity and that the fluid flows along the surface of the obstacle: 

u = v = B , = B  XI = O  as y-foo, (6) 

v = i[sgn ( x )  - sgn (x - l)] as y = 0. (7) 
The remaining condition depends on the behaviour of the magnetic field at the 
surface and it differs according to whether the obstacle is an insulator or a con- 
ductor. For a symmetric insulator, we have 

By= 0 at  y =  0. Pa)  
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At this point, we can show that the y component of the magnetic field is of second 
order throughout the obstacle, by solving for the magnetic field inside the in- 
sulator as a perturbation of the main field and by taking account of its symmetry 
about the x axis. Also we can show that the x component retains its surface 
value throughout the obstacle, by matching continuously to the outer field. On 
the other hand, for the ideal obstacle consisting of a perfect conductor, we have 

B,=v at y = O .  ( 8 b )  

This means that the line of force cannot penetrate into the perfect conductor and 
runs along its surface. A sheet current of zeroth order proportional to the surface 
field then flows along the surface. 

3. Solution in Fourier integral form 
We use Fourier transforms with respect to x to solve (1)-(8). Transformed 

quantities are distinguished from the original physical quantities by adding 
an overbar, e.g. 

1 r m  

By eliminating all the quantities except V among the transformed equations, 
the following equations are obtained: 

(l-e-ic) as y = 0, 
- 1 v=- 

(27$ it 
1 d2v 

( u N + i [ ) Z =  0 as y =  0, Ezgy2- 
where m = 1M2- 1, a = N(M2-  1) ( A 2 -  1) and /3 = N ( M 2 + A 2 -  1).  The index u 
takes the value 1 or 0 according as the obstacle is an insulator or perfect conductor. 
The transforms of the other quantities can be expressed in terms of 5: 

E = d q a y ,  (14) 

1 d2G 
NBv = - - - + ( N + i [ ) @ .  

mi5 dy2 

The solution satisfying (lo)-( 13) can be expressed as follows: 

@ = [V, exp (yh,) + V, exp (yh,)] (1 - e-”), 

A; + mE2 - unit A; + mE2 - anit 
(an)& - A;) ’ v -  v , = -  - (2?7)*iE(h;-A;)’ 
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where n = Nm, and the 5 signs in (19) must be chosen such that the real parts 
of A, and A,  are negative. 

The corresponding physical quantities can be found by taking the inverse 
transforms of (17) and (14)-( 16). For instance, 

where A, and hsi (s = 1,2) denote the real and the imaginary parts of A,, and 
T(, and Ki the real and the imaginary parts of (2n)&K. The first integral in the 
right-hand side of (20) expresses the compression effect due to the nose and the 
second the expansion effect due to the shoulder. Similar expressions can be 
obtained for the other quantities. 

4. Asymptotic expression of the solution 
Since A, in (20) does not vanish in general, the asymptotic expression of the 

integral can be found for large values of y according to the Laplace's method 
(ErdBlyi 1956, p. 36). The major contribution to the value of the integral arises 
from the immediate vicinity of those points of the interval 0 < < < 00 at which 
hs#J assumes its largest value. Now the largest value of arises at C = 0, 
as may be seen from (19), and the asymptotic expression can be provided by 
expanding A,, A,, V, and 

First we consider the case of a/b > 0. This case yields a hyperbolic type of 
flow in the limit R, + 00. Then in the neighbourhood of 6 = 0,  A,, As,, Kr  and 
xi arc expanded as follows: 

in the neighbourhood of fl  = 0. 

I (21) 
4, = - (BJPl)*@+O(64, 
AIi = -sgn(p)(glpl)gflzL+O(8),  



Pin i te  conductivity in linearized magnetogasdynamic $ow. 267 

The major contribution to the integral of (20) comes from the terms involving 
Ki. On taking into account only the first terms in ( 2 2 )  and (23), we obtain the 
following asymptotic expression: 

The factor I? is useful to estimate the possibility of an observation of magneto- 
hydrodynamic shock. If this factor is sufficiently small compared with unity, 
then the observation of a magnetohydrodynamic shock wave will be possible. 
Equation (24), however, does not provide the correct value in the limit R, + 00 

for the insulator (a = 1). It may be small if n/P is positive or large if n/P is 
negative. In  this limit, however, the flow near the obstacle is considerably 
decelerated owing to the strong Lorentz force, if the condition (Sa )  is accepted, 
and the linearized theory is no longer applicable. In  fact, from the Fourier 
integral of u, we can deduce that the perturbation velocity diverges and is 
proportional to N* in the neighbourhood of the obstacle. For the perfect con- 
ductor (a = O), on the other hand, the linearized theory is valid for all values of 
R,, and the asymptotic expression (24) also provides the correct value a t  the 
limit of R, + 00. 

I n  the gasdynamic limit R, -+ 0, the appropriate expansion of the Fourier 
integral (20) may be obtained from the expansion with respect to small N ,  
rather than small 6. Thus we can show that (20) reduces to the solution of the 
ordinary gasdynamic flow a t  this limit, for both the insulator and the perfect 
conductor. 

< 0, which yields an elliptic type of flow in the limit R, -+ 00, 

only equation ( 2 2 )  must be changed, to 
For the case of 

A,  = - 1~.1~1*t+o(t;3), 

The major contribution to the integral arises from the terms involving T& again, 
and we have the following asymptotic expression: 

Equation (27) does not provide the correct asymptotic value in the limit R, -+ 00 

for the insulator, for the same reason as that mentioned previously. 

5. Numerical results and discussion 
The flow field comparatively near the obstacle can be found by numerical 

calculation of the Fourier integrals. Using a computer, we can find the roots of 
the characteristic equation with complex coefficients and evaluate the integrals 
including their roots. 
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FIGURES 1 (a,  b) .  For legend see facing page. 
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FIGURE 1. Distributions of w, and B,  for insulator end N = 1. (a) M 2  = 2, A2 = 0.5. 
(b )  M2 = 4, A2 = 1.5. (c) M 2  = A2 = 0.6. 

Two cases are distinguished according as the wedge consists of an insulator or 
perfect conductor. Three typical flows are considered : 

(a) M 2  = 2, 

(b )  &f2 = 4 ,  

(c )  M 2  = 0.6, 

A2 = 0.5; 

A2 = 1.5; 

A2 = 0.6. 

Flow (a)  is hyperbolic in type at the limit R, --f 0 and elliptic at  the limit R, + 03. 

Flow ( c ) ,  conversely, is elliptic in type in the limit R, -+ 0 and hyperbolic in 
the limit 22, + 03. Flow ( b )  is of hyperbolic type in both limits, but the charac- 
teristics are in different directions. The values of the interaction parameter N 
are taken as 1 and 10 for the insulator and as 1 for the perfect conductor. The 
results are shown as distributions of v, u and B, along several streamlines for the 
above three flows in figures 1 (N = 1, insulator), 2 ( N  = 10, insulator) and 3 
( N  = 1, perfect conductor). 

The calculation is based on the approximate evaluation of the Fourier integrals 
by dividing them into trapezoidal strips. However, if the integrand behaves like 
5-1 sin (&) or t-l sin (4) sin ( b t )  for large values of e, the calculation is performed 
for the integrand minus its asymptotic function and then the function &r sgn (a) 
or +ln I(a+b)/(a-b)] is added to its result. Further, if the integrand has a 
singularity such as (-* a t  ( = 0, the analytically evaluated value from the ex- 
pansion about l =  0 is used for the first interval. The intervals are of the equal 
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FIGURE 2. Distributions of v, u and B, for insulator and N = 10. (a) M2 = 2, A2 = 0.5. 
( b )  M 2  = 4, A' = 1.5. (c) M' = A2 = 0.6. 
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FIGURES 3 (a, a). For legend see next page. 
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FIGURE 3. Distributions of u, u and B, for perfect conductor and N = 1. (a) M2 = 2, 
A* = 0.5. ( b )  M 2  = 4, A' = 1.5. (c) M 2  = A' = 0.6. 

length 0.01, and contributions are taken into account from 6 = 0 to 10 if the 
integrand includes an effectively operating exponential term, and from [ = 0 to 
30 or 80 for the other cases. 

First we consider the results of the insulator. In  flows (a)  and (b) ,  we can find 
the gasdynamic shock waves starting from the nose. They have the same velocity 
jump as in the pure gasdynamic case at the nose, but they decay with a distance 
from the nose and the flow behind them is no longer uniform owing to the Lorentz 
force. In  fact, by expanding the integrand in (20) for large 6 and taking into 
account only the contribution from the most dominant term, we can deduce that 
such a decay of the shock strength is proportional to exp ( - +mtNy) (Morioka 
1967). A similar discussion is possible for the expansion wave starting from the 
shoulder. In  flow ( c ) ,  on the other hand, the perturbation velocity u. on the 
surface shows a logarithmic singularity at  the nose and shoulder, as in the subsonic 
flow in ordinary gasdynamics. Thus, the flow field near the wedge retains the 
gasdynamical features, but they disappear with distance and there remains the 
flow with magnetohydrodynamic properties. Comparing the results for N = 1 
and 10, we can find how such a transition is improved by increasing N .  In flows ( b )  
and (c), we may notice the growth of a magnetohydrodynamic shock layer down- 
stream or upstream. 

The perturbation density has the same distribution profile as the perturbation 
velocity u from (5). The distribution, profiles of the magnetic field evidently have 
no discontinuity in any of the flows, but there are remarkable differences between 
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those in supersonic and subsonic flows. The abrupt change of the profiles near the 
surface, evident in the figures for N = 10, suggests the growth of a magneto- 
hydrodynamic boundary layer, which will significantly influeiice the outer flow 
as discussed in the previous section. However, further discussions for larger N 
are impossible within the present linearized theory. 

For the ideal case of a perfect conductor, the magnetic field cannot penetrate 
into the obstacle and runs along the surface. Thus, the distribution profile of the 
magnetic field is different from that in the insulator. I n  particular, the profile on 
the surface has cusps at  the nose and shoulder. Their values are finite but some- 
what large. Thus the flow also may be different from that in the insulator, owing 
to the interaction with such a magnetic field. In  fact, we can find a conspicuous 
leak ahead of the shock wave in the supersonic flow. From the asymptotic 
expansion of (20) for large [ or the series approximation of (1)-(4) for small N ,  
we can show that such a leak is of O ( N )  for the perfect conductor, and O ( N 2 )  
for the insulator. Nevertheless, the gasdynamic features such as shock jump or 
logarithmic singularity at  the nose and shoulder are still retained. They disappear 
at large distances from the obstacle and a flow with magnetohydrodynamic 
features such as a diffused shock layer appears. 

Pinally, we may notice that, from the above figures, the upstream shock wave 
will be produced more strongly by the insulator wedge, and the downstream shock 
wave by the perfect conductor. 
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